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Abstract. Hybrid mesons are exotic mesons in which the color field is not in the ground state. Their
understanding deserves interest from a theoretical point of view, because it is intimately related to nonper-
turbative aspects of QCD. Moreover, it seems that some recently detected particles, such as the π1(1600)
and the Y (4260), are serious hybrid candidates. In this work, we investigate the description of such ex-
otic hadrons by applying the auxiliary fields technique (also known as the einbein field method) to the
widely used spinless Salpeter Hamiltonian with appropriate linear confinement. Instead of the usual nu-
merical resolution, this technique allows to find simplified analytical mass spectra and wave functions of
the Hamiltonian, which still lead to reliable qualitative predictions. We analyse and compare two different
descriptions of hybrid mesons, namely a two-body qq̄ system with an excited flux tube, or a three-body
qq̄g system. We also compute the masses of the 1−+ hybrids. Our results are shown to be in satisfactory
agreement with lattice QCD and other effective models.

PACS. 12.39.Mk Glueball and nonstandard multi-quark/gluon states – 12.39.Ki Relativistic quark model
– 12.39.Pn Potential models

1 Introduction

The study of hybrid mesons is an active domain in the-
oretical as well as in experimental particle physics. From
a theoretical point of view, these particles are interpreted
as mesons in which the color field is in an excited state.
Clearly, this problem is related to fundamental aspects of
QCD, such as its nonperturbative nature. Numerous lat-
tice QCD calculations have been devoted to the study of
hybrid mesons, in particular to the properties of the 1−+

state, which is the lightest hybrid with exotic quantum
numbers (see ref. [1] for a review, and ref. [2] for more
recent references). On the experimental side, we can men-
tion the recently observed π1(1600) [3] and Y (4260) [4],
which could be interpreted as a 1−+ nn̄ hybrid and a 1−−

cc̄ hybrid, respectively [5].
Apart from lattice QCD, hybrid mesons have been

studied with effective models for a long time. For exam-
ple, we can quote the flux tube model [6], models with
constituent gluons [7], or the MIT bag model [8]. In po-
tential approaches, to which our paper is devoted, there
are two main models. In the first one, the quark and the
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antiquark are linked by a string, or flux tube, which sim-
ulates the exchange of gluons responsible for the confine-
ment. If the string is in the ground state, it reduces to the
usual linear confinement potential for heavy quarks, and
to a more general flux tube model for light quarks, where
the dynamics of the string cannot be neglected [9,10]. In
this stringy picture, it is possible for the flux tube to fluc-
tuate, and thus to be in an excited state. These string
excitations are analog to the gluon field excitations in full
QCD. They have been studied for example in refs. [11,12].
The second approach is to suppose that the hybrid meson
is a three-body system, formed of a quark, an antiquark,
and a constituent gluon, which represents the gluonic ex-
citation. Two fundamental strings then link the gluon to
the quark and to the antiquark. This picture has been
studied in ref. [7], but also in more recent works [13–17].

Nowadays, the spinless Salpeter Hamiltonian (SSH)
with a linear confinement is a widely used and successful
framework to compute hadron spectra in potential models
(see previous references). Since its kinetic operator is semi-
relativistic, most of the calculations have to be numeri-
cal. However, the auxiliary field (AF) technique allows to
greatly simplify the calculations [18] and, as we will see, to
find analytical solutions to this problem. Even if they are
approximated, they lead to conclusions which are qualita-
tively in agreement with well-known experimental facts. In
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particular, Regge trajectories are easily obtained for light
mesons by using AF [19]. Our purpose is to apply here
this formalism in order to get informations about hybrid
mesons. This formalism, also known as the einbein field
method, has been applied to quark-antiquark two-body
systems in refs. [20,21]. This method can be generalized
for the case of spinning particles [22].

Our paper is organized as follows. In sect. 2, we solve
the SSH in the case of a two-body problem. Although this
simple case is relatively well known, it will allow us to
introduce the AF formalism, and to observe that it leads
to correct predictions. Then, we present in sect. 3 the de-
scription of a hybrid meson in terms of a qq̄ system in
which the flux tube is excited. Another possible approach
is to see the hybrid mesons as a three-body system made
of a quark-antiquark pair and a constituent gluon. This
case is studied in sect. 4. As a result, we are able to com-
pute the effective qq̄ potential in both approaches. These
potentials can be compared to the predictions of other ef-
fective models and of lattice QCD calculations. It is done
in sect. 5. Finally, we compute the spectrum of the 1−+

hybrids in sect. 6, and we sum up our results in sect. 7.

2 The two-body problem

2.1 Mass formula and wave function

The SSH for a system made of two hadrons interacting
through a linear confinement is given by

H =
√

p 2
1 +m2

1 +
√

p 2
2 +m2

2 + ar. (1)

Let us now introduce three AF (or einbein fields): Two for
the quarks, denoted µi, and one for the potential, ν. The
Hamiltonian (1) then becomes

H(µi, ν) =
p 2
1 +m2

1

2µ1
+
µ1
2
+

p 2
2 +m2

2

2µ2
+
µ2
2
+
a2r2

2ν
+
ν

2
. (2)

The AF were introduced to get rid of the square roots in
H. Although being formally simpler,H(µi, ν) is equivalent
to H up to the elimination of the auxiliary fields thanks
to the constraints

δµi
H(µi, ν) = 0⇒ µi0 =

√

p 2
i +m2

i , (3a)

δνH(µi, ν) = 0⇒ ν0 = ar. (3b)

It is worth mentioning that 〈µi0〉 can be seen as a dy-
namical mass of the quark whose current mass is mi [23].
Moreover, the Hamiltonian (2) can be compared to the
one of the rotating string model (RSM) [24]. This is an ef-
fective meson model derived from the QCD Lagrangian, in
which the quark and the antiquark are linked by a Nambu-
Goto string simulating the confining interaction. The RSM
Hamiltonian reads, in the center-of-mass frame,

HRSM (µi, ν) =
1

2

{

p2r +m2
1

µ1
+
p2r +m2

2

µ2
+ µ1 + µ2

+ a2r2
∫ 1

0

dβ

ν
+

∫ 1

0

dβν +
L

2

a3r2

}

, (4)

with

a3 = µ1(1− ζ)2 + µ2ζ
2 +

∫ 1

0

dβ (β − ζ)2 ν. (5)

The parameter β labels the points of the string. ζ de-
fines the position of the center of mass on the string, and
µi, ν are the AF. In this framework, ν is seen as the dy-
namical energy of the string whose “static” energy is ar.
The complexity of (4) is due to the fact that the string con-
tributes to the total angular momentum L. If we neglect
the dynamical effects of the string, which are in fact suffi-
ciently small to be treated in perturbation (see ref. [19]),
the Hamiltonian (4) becomes

H(µi, ν) =
p 2
1 +m2

1

2µ1
+
µ1
2
+

p 2
2 +m2

2

2µ2
+
µ2
2
+
a2r2

2ν
+
ν

2
, (6)

which is precisely our SSH (2).
We can observe from the relations (3) that the AF are,

strictly speaking, operators. However, the calculations are
considerably simplified if one considers them as real num-
bers. The elimination of the AF is then finally achieved
by minimising the masses with respect to them [18]. This
procedure leads to a spectrum which is an upper bound
of the “true spectrum” (computed without AF), the dif-
ferences being about 10% [25]. In our case, the SSH turns
out to be a simple nonrelativistic harmonic oscillator (6).
Its mass spectrum and wave functions are thus readily
computed. They read

M(µi, ν)=ω(2n+`+3/2)+
m2

1

2µ1
+
m2

2

2µ2
+
µ1 + µ2 + ν

2
, (7)

ψ = φn,`(r)Y
m
` (θ, ϕ), (8)

with

ω =
√

a2/µ̃ν, β =
√

µ̃a2/ν, µ̃ =
µ1µ2
µ1 + µ2

. (9)

Y m
` are the spherical harmonics, and

φn,` = β
1

2
(`+3/2)

√

2n!/Γ (n+ `+ 3/2)

×r` e−βr2/2 L`+ 1

2

n (βr2) (10)

is a properly normalised radial eigenfunction of the three-
dimensional harmonic oscillator [26]. Lα

n are the Laguerre
polynomials.

ν is eliminated by demanding δνM(µi, ν) = 0, which
leads to

ν0 = (a2/µ̃)1/3(2n+ `+ 3/2)2/3, (11)

M(µi, ν0) =
3

2

(

a2

µ̃

)1/3

(2n+ `+ 3/2)2/3

+
m2

1

2µ1
+
m2

2

2µ2
+
µ1 + µ2

2
. (12)

The remaining AF, µi, cannot be analytically elimi-
nated in general from the condition δµi

M(µi, ν0) = 0. We
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will only consider three relevant special cases. Firstly, if
the two bodies have a large mass, we can set µi = mi

because the dynamical effects will be very small, and we
obtain

Mhh =
3

2

(

2a2

m̃

)1/3

(2n+ `+ 3/2)2/3 +m1 +m2, (13)

with m̃ the reduced mass. The mass formula (13) is valid
for example for a meson formed of two heavy quarks. It is
equal at large ` to the corresponding classical solution of
the relativistic flux tube model [10]. This phenomenologi-
cal model is in fact classically equivalent to the RSM if the
auxiliary fields are properly eliminated [23]. Moreover, at
large angular momentum,Mhh ∝ `2/3 in qualitative agree-
ment with the experimental data [10]. Secondly, if mi = 0,
as it is the case for light mesons and glueballs formed of
two gluons, we can compute that

µ1,0 = µ2,0 = µ0 =
(a

2

)1/2

(2n+ `+ 3/2)1/2, (14)

Mll = 4
(a

2

)1/2

(2n+ `+ 3/2)1/2 = 4µ0, (15)

as it is expected from the relativistic virial theorem [27].
Squaring (15), we get

M2
ll = 8a(2n+ `+ 3/2). (16)

When ` is large, it appears that the square mass increases
linearly with `. Thus, our solution reproduces the Regge
trajectories, which are the best known experimental fact
concerning the light mesons spectroscopy. The Regge slope
is given by 8a, which is in agreement with a recent calcula-
tion of the glueball spectrum with the RSM [28]. However,
it is larger than the prediction of the relativistic flux tube,
that is 2πa [9]. This is in fact related to the AF technique
itself, and more precisely to the number of AF which have
to be introduced, as explained in appendix A. With a ≈
0.2GeV2, a mass formula such as (16) is able to correctly
reproduce the experimental Regge slope of the mesons [9].
Finally if, say, m1 = 0 and m2 is large, we can find

(Mhl −m2)
2 = 4a(2n+ `+ 3/2). (17)

The Regge slope for a meson formed of a light and a
heavy quark is thus the half of the one for two light
quarks, as it was shown is ref. [10], in agreement with
experimental observations.

3 Hybrid meson and the excited flux tube

If the color field is in the ground state, it is generally
accepted that the potential between the quark and the
antiquark in a meson is mainly compatible with a funnel
potential,

Vqq̄(r) = ar − 4αS
3r

, (18)

where αS is the strong coupling constant. The ar part
is pure flux tube, thus pure confinement, while the

Coulomb term comes from the one-gluon exchange pro-
cess (OGE). The spectrum obtained with (18) is in good
agreement with experimental data for the light and heavy
mesons [29], but also with lattice QCD calculations [30].
Typical values for the parameters fitting these lattice QCD
data are a = 0.2GeV2, and αS = 0.2–0.3.

In a hybrid meson, we have to wonder about how this
potential will be modified. A well-known approach, based
on the computation of the flux tube fluctuations at the
quantum level, leads to the so-called Lüscher term. In this
approach, the potential between two fixed quarks is given
by [12]

Vqq̄(r) = ar +
π

r

(

N − 1

12

)

, (19)

where N is the excitation number of the string. For
N = 0, we recover the funnel potential (18) with formally
αS = π/16 ≈ 0.2. This corresponds more or less to the
usual value. For N > 0, the short-range term becomes
repulsive, and this potential should become applicable to
heavy hybrid mesons.

Another formalism has also been developed in ref. [11]
to treat the excitations of the flux tube. It is based on less
conventional approaches to string theory, and leads to

Vqq̄(r) =
√

a2r2 + 2πaN +
αS
6r

, (20)

where the short-range term is not due to the string, but
again to OGE, with the qq̄ pair in an octet. Let us note
that for large r,

√
a2r2 + 2πaN ≈ ar+ πN/r, and we ap-

proximately recover the Lüscher term. As we can consider
that the short-range term can be added in perturbation in
a first approach, the unperturbed spectrum of the poten-
tial (19) will be defined by the mass formula we derived
in sect. 2 from eq. (12). However, the confining part of
potential (20) being different, it will affect the mass spec-
trum, even at the unperturbed level. If N 6= 0, the calcu-
lations cannot be analytically performed, except for two
heavy quarks. In this case, one can readily obtain a sort
of Regge trajectory with respect to N ,

(Mhh − 2m)2 ≈ 2πaN. (21)

4 Hybrid mesons with constituent gluons

In this picture, it is assumed that the excitations of the
gluon field can be described by the potential created by a
constituent gluon. The quark-antiquark pair is thus in a
color octet in order for the hybrid to be a colorless object.
Assuming the Casimir scaling hypothesis, which seems to
be confirmed by several models [31], it can be shown that
the confinement is no more a Y-junction like in a baryon
but two fundamental strings linking each quarks to the
gluon [15]. Neglecting all the short-range interactions, the
three-body SSH is thus

H0 =
∑

i=q,q̄,g

√

p2
i +m2

i + a|xg − xq|+ a|xg − xq̄|. (22)
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Let us now consider a hybrid meson in which the quark
and the antiquark have the same mass, and are assumed
to be static like in lattice QCD. Then, all the properties
of the hybrid meson should depend only on the quark-
antiquark separation and on the quantum numbers of the
gluon. If we define xq−xq̄ = R, and r = −R/2+xg−xq̄ =
R/2+xg−xq̄, the potential of the strings is proportional
to |r+R/2|+|r−R/2|. As this expression is not useful in a
practical computation, we will use the Born-Oppenheimer
approximation

|r + R/2|+ |r −R/2| ≈ 2
√

r2 +R2/4 , (23)

valid for cos(r,R) ¿ r/R + R/4r. This upper bound is
always greater than 1 (the mimimum being reached for
2r = R). Actually, our assumption says that the gluon lies
on the symmetry plane of the qq̄ pair. The Hamiltonian
of the system for static quarks (p2

q,q̄ = 0) reads then

H0 =
√

p2 + 2a
√

r2 +R2/4 + 2m. (24)

The string tension a is the same than in the meson case.
We assumed an equal mass m for the quark and the anti-
quark and a vanishing current mass for the gluon.

The eigenvalues of the Hamiltonian (24) can be found
for any value of the quark-antiquark separation by intro-
ducing two AF, µ being again the constituent mass of
the gluon and ν the energy of the strings. With these
two fields, eq. (24) becomes a harmonic-oscillator Hamil-
tonian,

H0(µ, ν) =
p2

2µ
+
µ

2
+

2a2r2

ν
+
a2R2

2ν
+
ν

2
+ 2m. (25)

Its eigenvalues

E0(µ, ν)−2m =
2a(2n+ `+ 3/2)√

µν
+
µ+ ν

2
+
a2R2

2ν
, (26)

depend on R, and on the quantum numbers n and ` of the
gluon. Their eigenfunctions are given by (8), with

β = 2a
√

µ/ν . (27)

The constraints δµ,νE0(µ, ν) = 0 lead to

ν0 = k2µ−30 , (28)

a2R2µ60 + k2µ40 − k4 = 0, (29)

with
k = 2a(2n+ `+ 3/2). (30)

Equation (28) defines ν0 in terms of µ0, and this last AF
is found to be a solution of eq. (29). This equation can be
solved for any value of R thanks to the Cardan method
(see appendix B).

Two limit cases are interesting. The first one is the
limit of large R. Then, µ3 ≈ k2/aR, ν ≈ aR, and

E0 − 2m ≈ aR. (31)

The effective current mass for the gluon decreases with
the interquark distance. For large quark separation, the
energy is only given by the flux tube and the potential
energy is the expected linear confinement. Secondly, if R =
0, we have µ = ν =

√
k ≈ 775MeV, and

(E0 − 2m)2 = 4(2a)(2n+ `+ 3/2). (32)

By comparing this formula with (17), we see that this
situation corresponds to a gluelump: A hybrid meson seen
as a bound state of a gluon and a pointlike heavy meson.
The string tension is 2a because it is the superposition of
two fundamental strings. It can be computed that

〈

r2
〉

=
(2n+ `+ 3/2)

β
. (33)

Consequently, thanks to definition (27), we have

〈

r2
〉

=
(2n+ `+ 3/2)

2a

√

ν

µ
, (34)

and formula (32) is thus equivalent to

E0 − 2m = 2(2a)
√

〈r2〉 . (35)

Half of the energy is given by the confinement and the
other half by the kinetic energy of the gluon in agreement
with the virial theorem. It also very interesting to compare
formulas (21) and (32). They both predict Regge trajecto-
ries depending on the color field excitation, but they differ
in the interpretation they give to it. In the two-body case,
this excitation is characterised by the quantum numberN ,
defining the state of the string, while in the constituent
gluon model, the excitation is represented by the gluon
itself, and thus the Regge trajectory depends on its quan-
tum numbers.

In the general case, an analytical solution of eq. (29)
can always be found, as shown in formula (B.5) of ap-
pendix B. It is worth noting that our procedure is not
the same as the one developed in ref. [17], where the AF
were eliminated before computing the mass spectrum, and
the resulting Hamiltonian was solved variationally with a
numerical method.

The confinement interaction gives the correct behavior
a large R. But, in order to be consistent in the region
R ¿ √a we must add a OGE interaction between each
pair of particles, i.e.

∆H = 2
καS

√

r2 +R2/4
+
κ′ αS
R

, (36)

with κ = −3/2 the color factor of (anti)quark-gluon pair,
and κ′ = 1/6 the color factor for the quark-antiquark
pair [7]. We used in ∆H the approximation (23), as for
the unperturbed Hamiltonian (22). The angular momen-
tum is here a good quantum number even if we add the
short-range interaction. This was not the case in [17]. As
∆H is computed perturbatively, the total energy reads,
thanks to an usual approximation,

E − 2m ≈ E0(µ0, ν0)− 2m− 3αS
√

〈r2〉+R2/4
+
αS
6R

. (37)
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〈r2〉 is given by eq. (34). Let us notice that the Coulomb
interaction for the qq̄ system in an octet is repulsive.

5 The effective quark-antiquark potential

One of the observables in lattice QCD is the potential en-
ergy between the static quark-antiquark pair. It appears
that there are several levels of potential energy, corre-
sponding to different states of the gluon field [32]. These
excited states of the gluonic field are labeled by three
quantum numbers. The first one is the projection Λ of
the total angular momentum Jg = Lg + Sg of the gluon
on the qq̄-axis. The capital greek letters Σ,Π,∆, . . . , are
used to indicate the states of Λ = 0, 1, 2, . . . , respectively.
The combined operations of the charge conjugation and
the spatial inversion of the quark and of the antiquark is
also a symmetry. Its eigenvalue is denoted by ηCP . States
with ηCP = 1(−1) are denoted by the subscripts g (u).
There is an additional label for the Σ states: Σ states
which are even (odd) under a reflexion in a plane contain-
ing the qq̄-axis are denoted by a superscript + (−). All
these different states have been observed in ref. [33].

In the excited flux tube picture, the glue states with
N = 0 and N = 1 are uniquely the ground state Σ+

g and
Πu, respectively. For N > 1, the flux tube can be excited
in Λ = 0, 1, . . . , N states [11]. The CP value is given by
ηCP = (−1)N . Potentials (19) and (20) are compared to
the lattice data in fig. 1 for the lowest states. As remarked
in ref. [11], the particular string potential (20) fits the
excited levels with a good accuracy, while the Lüscher
potential (19) reproduces very well the ground state but
diverges too fast at small R for N > 0.
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Fig. 1. Comparison between lattice QCD calculations (sym-
bols) from ref. [32], and two-body models like the excited flux
tube (solid lines) from eq. (20) and the Lüscher term (dot-
dashed lines) from (19). All the potentials are plotted in terms
of the lattice scale R0 = 2.5GeV−1 and are shifted by an
overall amount Vqq̄(2R0). The parameters a = 0.2GeV2 and
α = 0.3 are fitted on the lattice ground state Σ+

g .
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Fig. 2. Same as fig. 1, but the solid lines now represent our
qq̄g mass formula (37). The upper curve is the P -wave (` = 1),
and the lower curve is the S-wave (` = 0). The ground state is
shown only for comparison, and is a funnel potential with the
parameters of fig. 1.
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Fig. 3. Comparison between the constituent gluon model of
ref. [14] (symbols), and our qq̄g model without short-range in-
teraction (solid lines), with qq̄ OGE term (dot-dashed lines)
and with the total OGE term (dashed lines). Parameters are
those of fig. 1.

In our constituent gluon model, defined by the mass
formula (37), we will assume for the gluon that n = 0. `
is then the only relevant quantum number. Since the qq̄
system and the gluon have both a negative intrinsic par-
ity, the parity of the states is the space parity (−1)`. The
charge conjugation on the gluon give a −1 factor, and a
(−1)Sqq̄ factor for the quark-antiquark pair. The value of
ηCP is thus (−1)`+Sqq̄+1 and can give either g or u states.
But, in our case, we made a strong symmetry assumption,
and considered that the gluon was always located in the
symmetry plane of the qq̄ pair. Thus, the only value we
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can reproduce is Λ = 0 with a positive subscript, since it
is the only value in agreement with the symmetry of our
wave function. With these considerations, we can conclude
that the states described by our model are Σ+ states. The
spin effect being weaker for maximum spin states [15], we
should better reproduce the states with Sqq̄ = 1. More
precisely, we get the Σ+

g for the S-wave (` = 0), and the

Σ+
u for the P -wave (` = 1). The comparison between the

lattice Σ states and the model for ` = 0, 1 with all short-
range interactions is shown in fig. 2. Although our formula
is simple and approximated, one can see that it fits with
a good agreement the lattice data. Let us note that, fol-
lowing our discussion on the quantum numbers C and P ,
the P -wave corresponds to a 1−+ hybrid meson:

a)� � � b)� � �
� � � � � �
� � � � � �

c)

� ��
� �

�
d)

� ��
� �

�
(38)

� � � � �

e)
� � �� � f)

� ��
�

� �

�
��

� � � .

Other recent studies of hybrid mesons with a con-
stituent gluon can also be mentioned [13,14,34]. In all
these works, based on QCD in the Coulomb gauge and
the quasi-particle representation, the Hamiltonian of the
system was solved variationally by a numerical method.
In a first work [34], the level ordering of the states at
short distance disagreed with lattice results. For example,
the Πg state was found below the Πu at short distance.
Recently, the authors added new interactions, listed in
the diagrams (38) [14]. a) and b) are the self-energies of
the quarks and the gluon, respectively, and b) and c) are
the quark-antiquark, and (anti)quark-gluon interactions,
which are responsible for both the confinement and the
short-range term. These four diagrams were the only ones
considered in ref. [34]. The new diagrams are interpreted
as particular three-body interactions, and are represented
by e) and f) [14]. We present in fig. 3 the comparison
between our analytic model and the numerical data of
ref. [14]. The solid lines represent the energy (26) of the
Hamiltonian with only the confinement for ` = 0, 1. The
dot-dashed and dashed lines are the energies with the qq̄
Coulomb repulsive interaction and with all the short-range
interactions respectively. Our results are somewhat differ-
ent at small R, but agree in the confining part. It can also
be checked that the full energy (dashed lines) better fits
the plot of the first study [34]. This can be understood
by noting that our model only includes the confinement
and the Coulomb term coming from OGE, thus the dia-
grams b) and c). We neglected the self-energy a) and b),
but it should not be a dominant contribution in poten-
tial models. Indeed, in the case of heavy quarks, it is very

small [19]. Moreover it is even argued in some approaches
that the gluonic self-energy is vanishing [35,36]. However,
it seems that the three-body interactions e) and f), that
we did not took into account, bring a relevant contribution
to the total energy. This could be clarified in future works.

6 Hybrid spectrum

Masses of heavy hybrid mesons can be derived from
eq. (37) by taking the miminum of the energy with re-
spect to R. We find a that E − 2m = 1.700GeV is the
minimum value for the P -wave. As we argued in the pre-
vious section, this P -wave represents a 1−+ hybrid. Many
lattice studies have been devoted to such exotic mesons,
and we can compare our predictions with these results.
This is done in table 1. For the minimum of the S-wave,
we find the value E − 2m = 1.16GeV. This gives a cc̄g
mass around 3.66GeV for the 1++ state in disagreement
with the lattice result 7.315GeV of ref. [37]. Neverthe-
less, our value is close to the experimal state X(3872) [38]
which could be interpreted as a hybrid meson but also as
a meson-antimeson molecule [39].

Obviously, our mass formula is only valid for the heavy
quarks, namely c and b. But we see in table 1 that these
masses are even in good agreement with recent lattice re-
sults concerning light hybrids nn̄g and ss̄g. This could be
an indication that the dominant degree of freedom in a hy-
brid meson is the one coming from the constituent gluon,
the quarks mainly bringing a rest mass term to the total
mass. However, if we compare our results to a previous
work based on QCD in Coulomb gauge [40], we find that
the agreement is good for the charmed hybrid, where the
dynamical effects are small, but rather bad in the light sec-
tor. This shows that the dynamical effects of the quarks,
following the way they are taken into account, consider-
ably affect the hybrid spectrum. Such effects should thus
be studied with more details in future works. Let us finally
remark that, in our model, we found E−2m = 1.700GeV
to be a constant, which gives the energy coming from the
constituent gluon in the P -wave. This is close to the ex-
otic meson π1(1600) [3]. In the excited flux tube model,

the equivalent energy of the string fluctuation is
√
2πaN ,

with N = 3, that is 1.942GeV, a higher value than with
our constituent gluon approach. In the Coulomb gauge

Table 1. 1−+ hybrids masses in our constituent gluon model,
Mqq̄g, compared to lattice QCD computations, Mlat. Masses
are in GeV, and the quark masses mq are taken from the Par-
ticle Data Group [41]. The errors on our results are simply
computed from the Particle Data Group errors on the quark
masses.

q mq Mqq̄g Mlat

n 0.005± 0.003 1.710± 0.006 1.740± 0.240 [42]

s 0.105± 0.025 1.910± 0.050 2.100± 0.120 [43]

c 1.250± 0.100 4.200± 0.200 4.405± 0.038 [2]

b 4.500± 0.400 10.700± 0.800 10.977± 0.123 [44]



F. Buisseret and V. Mathieu: Hybrid mesons with auxiliary fields 349

model, E − 2m = 1.825GeV in the charmed sector, in
agreement with our result.

7 Summary of the results

In this work, we studied the hybrid mesons in the frame-
work of potential models. In particular, we applied the
auxiliary fields technique to obtain analytical mass for-
mula and wave functions of the spinless Salpeter Hamil-
tonian with linear confinement. Firstly, we showed that in
the well-known case of mesons, the auxiliary fields allow
to get easily mass formula whose features are qualitatively
in agreement with experiment: The Regge trajectories for
mesons formed of two light quarks or one heavy and one
light quark are correctly predicted.

The simplest way to study hybrid mesons is to work
in the excited flux tube framework. It is based on the
idea that the flux tube (a Nambu-Goto string) linking the
quark and the antiquark is not in its ground state, but in
an excited one. Since the work of Isgur and Paton [45],
the relativistic vibrating string models were widely dis-
cussed in the literature. In particular, it was shown in
ref. [12] that the first-order correction of the excited flux
tube was a universal term given by π(N − 1/12)/r. In
ref. [11], it was suggested from string theory that the con-

finement potential should be modified to
√
a2r2 + 2πaN ,

this formula giving good results when compared to lattice
calculations [32]. As in this approach we always deal with
a two-body problem, the mass spectra can again be eas-
ily computed. In particular, we showed that in a hybrid
meson formed of two heavy quarks of mass m, one should
have (Mhh − 2m)2 ∝ N .

We also considered another picture, which assimi-
lates the hybrid meson to a three-body quark-antiquark-
constituent gluon bound state [7]. In the case of two static
quarks of the same mass, we computed the mass spectrum
of the corresponding hybrid meson. As a result, we have
been able to find an analytic expression for the interquark
potential in terms of the quantum numbers of the gluon.
Although our model was very simple, it correctly leads
to the gluelump spectrum if the quark-antiquark separa-
tion is zero, and it reproduces rather well the lattice data
which can be described within our assumptions. We was
actually only able to reproduce the Σ+ curves, but the
other states can also be described following the quantum
numbers of the gluon [17]. In the gluelump case more-
over, one can observe that (Mhh − 2m) ∝ `. This illus-
trates the similarity between the excited flux tube and the
constituent gluon formalisms, but the degrees of freedom
are different: The excitation number N is replaced by the
gluon orbital momentum `. Other works studied the pic-
ture of a constituent gluon with two static quarks [14,34].
An interesting point is that our curves correctly fit pre-
vious works [34], but slightly disagree with more recent
references, where three-body interactions, which we ne-
glected, are taken into account [14]. The relevance of such
interactions in potential models could be studied in the
future. We have also shown that our model could well re-
produce lattice QCD data, and in particular the P -wave,

corresponding to the 1−+ hybrids. The hybrid masses we
obtained are roughly in agreement with lattice, and also
compatible with the π1(1600). However, the mass we get
for the nn̄ hybrid disagrees with a previous study based
on QCD in the Coulomb gauge, because of the dynamical
effects of the quarks, which are rather strong in this last
approach.

Our study only aims to understand in an intuitive way
qualitative features of hybrid mesons. In future works, the
main challenge will be to compute precisely the various in-
teractions coming from the dynamics and spin of the par-
ticles, which we neglected here. To do this, we think that
a model with constituent gluons is more interesting, be-
cause a constituent gluon has its well-defined color, spin
and interactions with quarks. On the contrary, the only
clear characteristic of an excited flux tube is the quan-
tum number N . We leave such detailed studies of the spin
effects in hybrids for future work.

The authors would like to thank the FNRS Belgium and IISN
for financial support. We are grateful to Dr. Fabian Brau and
Dr. Claude Semay for advices and useful discussions, and to
Dr. Adam Szczepaniak for providing us the data of refs. [14,32].

Appendix A. Influence of the auxiliary fields

on the mass spectrum

Let us suppose that the Hamiltonian of our problem is of
the form

H0 =

N
∑

i=1

Ai, (A.1)

where Ai are some operators. The eigenvalues E0 and
eigenstates |ψ0〉 are assumed to be known. We can intro-
duce k AF, denoted as φi, to obtain a new Hamiltonian
Hk,

Hk =

k
∑

i=1

(

A2
i

2φi
+
φi
2

)

+

N
∑

j=k+1

Aj . (A.2)

As an illustration, one can compare the Hamiltoni-
ans (A.1) and (A.2) to the SSH (1) and (2). Hk is equiv-
alent to H0 if the AF are directly eliminated as opera-
tors. However, our method is to consider that the φi are
real numbers, in order to simplify the calculations. Let us
suppose that we know Ek and |ψk〉 the solutions of the
eigenequation defined by Hk. Then, clearly,

〈ψk| (Ai − φi)
2 |ψk〉 ≥ 0

⇒ 〈ψk|
A2
i

2φi
+
φi
2
|ψk〉 ≥ 〈ψk|Ai |ψk〉 . (A.3)

This implies that

Ek = 〈ψk|Hk |ψk〉 ≥ 〈ψk|H0 |ψk〉 ≥ E0. (A.4)

Moreover, the same argument immediately allows to show
that

Ek+1 ≥ Ek −
1

2φk+1
〈ψk+1| (Ak+1 − φk+1)

2 |ψk+1〉

≥ Ek, (A.5)
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the only condition being that the φj are positive. This is
always the case in the situations we treated here, since
the AF are interpreted as effective quark mass and string
energy. Thus, we have proved that the masses obtained
with the AF technique are an upper bound of the true
masses, as already shown in ref. [25], but also that this
upper bound is less and less strong when the number of AF
increases. As an example, we can note that the Regge slope
coming from the full two-body SSH without AF is around
2πa [10]. With only one AF, it has been shown in ref. [19]
that the slope was roughly equal to 7a. Here, with two AF,
we observed a slope given by 8a. So, the slope increases
with the number of AF. Instead of the mass formula (16),
we should actually write the following inequality:

M2
ll ≤ 8a(2n+ `+ 3/2). (A.6)

Appendix B. Cardan method for third-degree

equations

In this section, we give the explicit solution of eq. (29).
With µ20 = X, this condition can be rewritten as

X3 +
k2

a2R2
X2 − k4

a2R2
= 0. (B.1)

Since µ0 is interpreted as an effective quark mass, X has
to be a positive real number. The corresponding solution
of eq. (B.1) is

X0 =
3

√

V +
√

Q3 + V 2 +
3

√

V −
√

Q3 + V 2 , (B.2)

with

Q = − k2

9a2R2
, (B.3)

V =
k4

2a2R2
− 1

27

(

k2

a2R2

)3

. (B.4)

Then, we have simply

µ0 = +
√

X0. (B.5)

References

1. C. Mc Neile, Nucl. Phys. A 711, 303 (2002) [hep-
lat/0207001] and references therein.

2. Y. Liu, X.-Q. Luo, Phys. Rev. D 73, 054510 (2006) [hep-
lat/0511015] and references therein.

3. G.S. Adams et al., Phys. Rev. Lett. 81, 5760 (1998); S.U.
Chung et al., Phys. Rev. D 65, 072001 (2002).

4. BABAR Collaboration (B. Aubert et al.), Phys. Rev. Lett.
95, 142001 (2005) [hep-ex/0506081].

5. F.E. Close, P.R. Page, Phys. Lett. B 628, 215 (2005) [hep-
ph/0507199].

6. N. Isgur, J. Paton, Phys. Lett. B 124, 247 (1983); F.E.
Close, P.R. Page, Nucl. Phys. B 433, 233 (1995).

7. D. Horn, J. Mandula, Phys. Rev. D 17, 898 (1978); A.
Le Yaouanc, L. Oliver, O. Pène, J.-C. Raynal, S. Ono, Z.
Phys. C 28, 309 (1985); Yu.S. Kalashnikova, Z. Phys. C
62, 323 (1994).

8. T. Barnes, F.E. Close, Phys. Lett. B 116, 365 (1982).
9. D. LaCourse, M.G. Olsson, Phys. Rev. D 39, 2751 (1989).

10. M.G. Olsson, S. Veseli, Phys. Rev. D 51, 3578 (1995).
11. T.J. Allen, M.G. Olsson, S. Veseli, Phys. Lett. B 434, 110

(1998) [hep-ph/9804452].
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